Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Int. j. morphol ; 41(2): 675-685, abr. 2023. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1440334

RESUMO

SUMMARY: Pulmonary ventilation is a mechanical process in which the respiratory muscles act in coordination to maintain the oxygenation of the organism. Any alteration in the performance of these muscles may reduce the effectiveness of the process. The respiratory muscles differ from the other skeletal muscles in the vital support that they provide through rhythmiccontractions. The structure and energy system of the muscles are specially adapted to perform this function. The composition of the respiratory muscles is exceptional; they are small, and present an abundant capillary network, endowing them with a high aerobic level and resistance to fatigue. Coordinated regulation of the local renin-angiotensin system provides proper blood flow and energy supply in the myofibrils of the skeletal muscle tissue. Specifically, this performance will depend to a large extent on blood flow and glucose consumption, regulated by the renin-angiotensin system. The angiotensin converting enzyme is responsible for degrading kinins, which finally regulate muscle bioenergy and glucose between the blood vessel and the skeletal muscle. The objective of this review is to describe the structure of the respiratory muscles and their association with the angiotensin converting enzyme gene.


La ventilación pulmonar es un proceso mecánico en el que los músculos respiratorios actúan coordinadamente para mantener la oxigenación en el organismo. Así, cualquier alteración en el desempeño de estos músculos puede reducir la efectividad del proceso. Los músculos respiratorios se diferencian de otros músculos esqueléticos, debido al apoyo vital que brindan a través de sus contracciones rítmicas. La estructura y el sistema energético de estos músculos están especialmente adaptados para realizar esta función. La composición de los músculos respiratorios es especial; son pequeñas y presentan una abundante red capilar, lo que les otorga un alto nivel aeróbico y resistencia a la fatiga. La regulación coordinada del sistema renina-angiotensina local, proporciona un adecuado flujo sanguíneo y suministro de energía a las miofibrillas del músculo esquelético. En concreto, este rendimiento dependerá en gran medida del flujo sanguíneo y del consumo de glucosa, regulado por el sistema renina-angiotensina. Aquí, la enzima convertidora de angiotensina es responsable de degradar las kininas, que finalmente regulan la bioenergía muscular y la glucosa entre el vaso sanguíneo y el músculo esquelético. El objetivo de esta breve comunicación es describir la estructura de los músculos respiratorios y su asociación con el gen de la enzima convertidora de angiotensina.


Assuntos
Humanos , Músculos Respiratórios/anatomia & histologia , Músculos Respiratórios/enzimologia , Músculos Respiratórios/fisiologia , Polimorfismo Genético , Sistema Renina-Angiotensina , Músculos Respiratórios/embriologia , Peptidil Dipeptidase A/genética
2.
Rev. méd. Chile ; 127(3): 269-75, mar. 1999. graf
Artigo em Espanhol | LILACS | ID: lil-243790

RESUMO

Background: Glutathione peroxidase (GSHPx) and catalase are two important cellular antioxidant enzymes involved in H2O2 and lipid-peroxide metabolism. Aim: To study the effects of growth, maturation and aging on the activity of these enzymes. Material and methods: GSHPx and catalase specific activities were measured in samples of diaphragm and intercostal muscle of male Sprague-Dawley rats of different ages (21, 50, 70, 180 and 365 days), anesthetised with chloral hydrate (45 mg/100 g ip). Results: The diaphragm and intercostal muscles did not differ in GSHPx activity at 21 days. After that, GSHPx activity increased progressively with age, but following a different pattern, in each muscle, suggesting an increase in enzyme substrates with age. In one year old animals, GSHPx activity was 5 times higher for the diaphragm and 3 times higher for the intercostal muscles, when compared with values observed at 21 days of age. Catalase activity also increased with age in the diaphragm but not in the intercostal muscles. Conclusions: GSHPx activity increases progressively with age in rat respiratory muscles, with a time course that is specific of each muscle. Catalase activity increases with age only in the diaphragm. These results support the hypothesis that antioxidants in respiratory muscles undergo specific regulatory changes with age


Assuntos
Animais , Ratos , Catalase/metabolismo , Glutationa Peroxidase/metabolismo , Músculos Respiratórios/enzimologia , Envelhecimento , Fatores Etários , Ratos Sprague-Dawley/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA